Module scenario.agent_adapter
Agent adapter module for integrating custom agents with the Scenario framework.
This module provides the abstract base class that users must implement to integrate their existing agents with the Scenario testing framework. The adapter pattern allows any agent implementation to work with the framework regardless of its underlying architecture or API.
Expand source code
"""
Agent adapter module for integrating custom agents with the Scenario framework.
This module provides the abstract base class that users must implement to integrate
their existing agents with the Scenario testing framework. The adapter pattern allows
any agent implementation to work with the framework regardless of its underlying
architecture or API.
"""
from abc import ABC, abstractmethod
from typing import ClassVar
from .types import AgentInput, AgentReturnTypes, AgentRole
class AgentAdapter(ABC):
"""
Abstract base class for integrating custom agents with the Scenario framework.
This adapter pattern allows you to wrap any existing agent implementation
(LLM calls, agent frameworks, or complex multi-step systems) to work with
the Scenario testing framework. The adapter receives structured input about
the conversation state and returns responses in a standardized format.
Attributes:
role: The role this agent plays in scenarios (USER, AGENT, or JUDGE)
Example:
```
import scenario
from my_agent import MyCustomAgent
class MyAgentAdapter(scenario.AgentAdapter):
def __init__(self):
self.agent = MyCustomAgent()
async def call(self, input: scenario.AgentInput) -> scenario.AgentReturnTypes:
# Get the latest user message
user_message = input.last_new_user_message_str()
# Call your existing agent
response = await self.agent.process(
message=user_message,
history=input.messages,
thread_id=input.thread_id
)
# Return the response (can be string, message dict, or list of messages)
return response
# Use in a scenario
result = await scenario.run(
name="test my agent",
description="User asks for help with a coding problem",
agents=[
MyAgentAdapter(),
scenario.UserSimulatorAgent(),
scenario.JudgeAgent(criteria=["Provides helpful coding advice"])
]
)
```
Note:
- The call method must be async
- Return types can be: str, ChatCompletionMessageParam, List[ChatCompletionMessageParam], or ScenarioResult
- For stateful agents, use input.thread_id to maintain conversation context
- For stateless agents, use input.messages for the full conversation history
"""
role: ClassVar[AgentRole] = AgentRole.AGENT
@abstractmethod
async def call(self, input: AgentInput) -> AgentReturnTypes:
"""
Process the input and generate a response.
This is the main method that your agent implementation must provide.
It receives structured information about the current conversation state
and must return a response in one of the supported formats.
Args:
input: AgentInput containing conversation history, thread context, and scenario state
Returns:
AgentReturnTypes: The agent's response, which can be:
- str: Simple text response
- ChatCompletionMessageParam: Single OpenAI-format message
- List[ChatCompletionMessageParam]: Multiple messages for complex responses
- ScenarioResult: Direct test result (typically only used by judge agents)
Example:
```
async def call(self, input: AgentInput) -> AgentReturnTypes:
# Simple string response
user_msg = input.last_new_user_message_str()
return f"I understand you said: {user_msg}"
# Or structured message response
return {
"role": "assistant",
"content": "Let me help you with that...",
}
# Or multiple messages for complex interactions
return [
{"role": "assistant", "content": "Let me search for that information..."},
{"role": "assistant", "content": "Here's what I found: ..."}
]
```
"""
pass
Classes
class AgentAdapter
-
Abstract base class for integrating custom agents with the Scenario framework.
This adapter pattern allows you to wrap any existing agent implementation (LLM calls, agent frameworks, or complex multi-step systems) to work with the Scenario testing framework. The adapter receives structured input about the conversation state and returns responses in a standardized format.
Attributes
role
- The role this agent plays in scenarios (USER, AGENT, or JUDGE)
Example
import scenario from my_agent import MyCustomAgent class MyAgentAdapter(scenario.AgentAdapter): def __init__(self): self.agent = MyCustomAgent() async def call(self, input: scenario.AgentInput) -> scenario.AgentReturnTypes: # Get the latest user message user_message = input.last_new_user_message_str() # Call your existing agent response = await self.agent.process( message=user_message, history=input.messages, thread_id=input.thread_id ) # Return the response (can be string, message dict, or list of messages) return response # Use in a scenario result = await scenario.run( name="test my agent", description="User asks for help with a coding problem", agents=[ MyAgentAdapter(), scenario.UserSimulatorAgent(), scenario.JudgeAgent(criteria=["Provides helpful coding advice"]) ] )
Note
- The call method must be async
- Return types can be: str, ChatCompletionMessageParam, List[ChatCompletionMessageParam], or ScenarioResult
- For stateful agents, use input.thread_id to maintain conversation context
- For stateless agents, use input.messages for the full conversation history
Expand source code
class AgentAdapter(ABC): """ Abstract base class for integrating custom agents with the Scenario framework. This adapter pattern allows you to wrap any existing agent implementation (LLM calls, agent frameworks, or complex multi-step systems) to work with the Scenario testing framework. The adapter receives structured input about the conversation state and returns responses in a standardized format. Attributes: role: The role this agent plays in scenarios (USER, AGENT, or JUDGE) Example: ``` import scenario from my_agent import MyCustomAgent class MyAgentAdapter(scenario.AgentAdapter): def __init__(self): self.agent = MyCustomAgent() async def call(self, input: scenario.AgentInput) -> scenario.AgentReturnTypes: # Get the latest user message user_message = input.last_new_user_message_str() # Call your existing agent response = await self.agent.process( message=user_message, history=input.messages, thread_id=input.thread_id ) # Return the response (can be string, message dict, or list of messages) return response # Use in a scenario result = await scenario.run( name="test my agent", description="User asks for help with a coding problem", agents=[ MyAgentAdapter(), scenario.UserSimulatorAgent(), scenario.JudgeAgent(criteria=["Provides helpful coding advice"]) ] ) ``` Note: - The call method must be async - Return types can be: str, ChatCompletionMessageParam, List[ChatCompletionMessageParam], or ScenarioResult - For stateful agents, use input.thread_id to maintain conversation context - For stateless agents, use input.messages for the full conversation history """ role: ClassVar[AgentRole] = AgentRole.AGENT @abstractmethod async def call(self, input: AgentInput) -> AgentReturnTypes: """ Process the input and generate a response. This is the main method that your agent implementation must provide. It receives structured information about the current conversation state and must return a response in one of the supported formats. Args: input: AgentInput containing conversation history, thread context, and scenario state Returns: AgentReturnTypes: The agent's response, which can be: - str: Simple text response - ChatCompletionMessageParam: Single OpenAI-format message - List[ChatCompletionMessageParam]: Multiple messages for complex responses - ScenarioResult: Direct test result (typically only used by judge agents) Example: ``` async def call(self, input: AgentInput) -> AgentReturnTypes: # Simple string response user_msg = input.last_new_user_message_str() return f"I understand you said: {user_msg}" # Or structured message response return { "role": "assistant", "content": "Let me help you with that...", } # Or multiple messages for complex interactions return [ {"role": "assistant", "content": "Let me search for that information..."}, {"role": "assistant", "content": "Here's what I found: ..."} ] ``` """ pass
Ancestors
- abc.ABC
Subclasses
Class variables
var role : ClassVar[AgentRole]
-
The type of the None singleton.
Methods
async def call(self, input: AgentInput) ‑> str | openai.types.chat.chat_completion_developer_message_param.ChatCompletionDeveloperMessageParam | openai.types.chat.chat_completion_system_message_param.ChatCompletionSystemMessageParam | openai.types.chat.chat_completion_user_message_param.ChatCompletionUserMessageParam | openai.types.chat.chat_completion_assistant_message_param.ChatCompletionAssistantMessageParam | openai.types.chat.chat_completion_tool_message_param.ChatCompletionToolMessageParam | openai.types.chat.chat_completion_function_message_param.ChatCompletionFunctionMessageParam | List[openai.types.chat.chat_completion_developer_message_param.ChatCompletionDeveloperMessageParam | openai.types.chat.chat_completion_system_message_param.ChatCompletionSystemMessageParam | openai.types.chat.chat_completion_user_message_param.ChatCompletionUserMessageParam | openai.types.chat.chat_completion_assistant_message_param.ChatCompletionAssistantMessageParam | openai.types.chat.chat_completion_tool_message_param.ChatCompletionToolMessageParam | openai.types.chat.chat_completion_function_message_param.ChatCompletionFunctionMessageParam] | ScenarioResult
-
Process the input and generate a response.
This is the main method that your agent implementation must provide. It receives structured information about the current conversation state and must return a response in one of the supported formats.
Args
input
- AgentInput containing conversation history, thread context, and scenario state
Returns
AgentReturnTypes
-
The agent's response, which can be:
-
str: Simple text response
-
ChatCompletionMessageParam: Single OpenAI-format message
-
List[ChatCompletionMessageParam]: Multiple messages for complex responses
-
ScenarioResult: Direct test result (typically only used by judge agents)
-
Example
async def call(self, input: AgentInput) -> AgentReturnTypes: # Simple string response user_msg = input.last_new_user_message_str() return f"I understand you said: {user_msg}" # Or structured message response return { "role": "assistant", "content": "Let me help you with that...", } # Or multiple messages for complex interactions return [ {"role": "assistant", "content": "Let me search for that information..."}, {"role": "assistant", "content": "Here's what I found: ..."} ]
Expand source code
@abstractmethod async def call(self, input: AgentInput) -> AgentReturnTypes: """ Process the input and generate a response. This is the main method that your agent implementation must provide. It receives structured information about the current conversation state and must return a response in one of the supported formats. Args: input: AgentInput containing conversation history, thread context, and scenario state Returns: AgentReturnTypes: The agent's response, which can be: - str: Simple text response - ChatCompletionMessageParam: Single OpenAI-format message - List[ChatCompletionMessageParam]: Multiple messages for complex responses - ScenarioResult: Direct test result (typically only used by judge agents) Example: ``` async def call(self, input: AgentInput) -> AgentReturnTypes: # Simple string response user_msg = input.last_new_user_message_str() return f"I understand you said: {user_msg}" # Or structured message response return { "role": "assistant", "content": "Let me help you with that...", } # Or multiple messages for complex interactions return [ {"role": "assistant", "content": "Let me search for that information..."}, {"role": "assistant", "content": "Here's what I found: ..."} ] ``` """ pass