Module scenario.scenario_executor
Scenario execution engine for agent testing.
This module contains the core ScenarioExecutor class that orchestrates the execution of scenario tests, managing the interaction between user simulators, agents under test, and judge agents to determine test success or failure.
Expand source code
"""
Scenario execution engine for agent testing.
This module contains the core ScenarioExecutor class that orchestrates the execution
of scenario tests, managing the interaction between user simulators, agents under test,
and judge agents to determine test success or failure.
"""
import sys
from typing import (
Awaitable,
Callable,
Dict,
List,
Optional,
Set,
Tuple,
Union,
TypedDict,
)
import time
import warnings
import termcolor
import asyncio
import concurrent.futures
from scenario.config import ScenarioConfig
from scenario._utils import (
convert_agent_return_types_to_openai_messages,
check_valid_return_type,
print_openai_messages,
show_spinner,
await_if_awaitable,
get_batch_run_id,
generate_scenario_run_id,
)
from openai.types.chat import (
ChatCompletionMessageParam,
ChatCompletionUserMessageParam,
ChatCompletionAssistantMessageParam,
)
from .types import AgentInput, AgentRole, ScenarioResult, ScriptStep
from ._error_messages import agent_response_not_awaitable
from .cache import context_scenario
from .agent_adapter import AgentAdapter
from .script import proceed
from pksuid import PKSUID
from .scenario_state import ScenarioState
from ._events import (
ScenarioEventBus,
ScenarioEvent,
ScenarioRunStartedEvent,
ScenarioMessageSnapshotEvent,
ScenarioRunFinishedEvent,
ScenarioRunStartedEventMetadata,
ScenarioRunFinishedEventResults,
ScenarioRunFinishedEventVerdict,
ScenarioRunFinishedEventStatus,
convert_messages_to_api_client_messages,
)
from rx.subject.subject import Subject
from rx.core.observable.observable import Observable
class ScenarioExecutor:
"""
Core orchestrator for scenario-based agent testing.
The ScenarioExecutor manages the complete lifecycle of a scenario test, including:
- Orchestrating conversations between user simulators, agents, and judges
- Managing turn-based execution flow
- Handling script-based scenario control
- Collecting and reporting test results
- Supporting debug mode for interactive testing
This class serves as both a builder (for configuration) and an executor (for running tests).
Most users will interact with it through the high-level `scenario.run()` function rather
than instantiating it directly.
Attributes:
name: Human-readable name for the scenario
description: Detailed description of what the scenario tests
agents: List of agent adapters participating in the scenario
script: Optional list of script steps to control scenario flow
config: Configuration settings for execution behavior
"""
name: str
description: str
agents: List[AgentAdapter]
script: List[ScriptStep]
config: ScenarioConfig
_state: ScenarioState
_total_start_time: float
_pending_messages: Dict[int, List[ChatCompletionMessageParam]]
_pending_roles_on_turn: List[AgentRole] = []
_pending_agents_on_turn: Set[AgentAdapter] = set()
_agent_times: Dict[int, float] = {}
_events: Subject
event_bus: ScenarioEventBus
batch_run_id: str
scenario_set_id: str
def __init__(
self,
name: str,
description: str,
agents: List[AgentAdapter] = [],
script: Optional[List[ScriptStep]] = None,
# Config
max_turns: Optional[int] = None,
verbose: Optional[Union[bool, int]] = None,
cache_key: Optional[str] = None,
debug: Optional[bool] = None,
event_bus: Optional[ScenarioEventBus] = None,
set_id: Optional[str] = None,
):
"""
Initialize a scenario executor.
Args:
name: Human-readable name for the scenario (used in reports and logs)
description: Detailed description of what the scenario tests.
This guides the user simulator's behavior and provides context.
agents: List of agent adapters participating in the scenario.
Typically includes: agent under test, user simulator, and judge.
script: Optional list of script steps to control scenario flow.
If not provided, defaults to automatic proceeding.
max_turns: Maximum number of conversation turns before timeout.
Overrides global configuration for this scenario.
verbose: Whether to show detailed output during execution.
Can be True/False or integer level (2 for extra details).
cache_key: Cache key for deterministic behavior across runs.
Overrides global configuration for this scenario.
debug: Whether to enable debug mode with step-by-step execution.
Overrides global configuration for this scenario.
event_bus: Optional event bus that will subscribe to this executor's events
set_id: Optional set identifier for grouping related scenarios
"""
self.name = name
self.description = description
self.agents = agents
self.script = script or [proceed()]
config = ScenarioConfig(
max_turns=max_turns,
verbose=verbose,
cache_key=cache_key,
debug=debug,
)
self.config = (ScenarioConfig.default_config or ScenarioConfig()).merge(config)
self.reset()
# Create executor's own event stream
self._events = Subject()
# Create and configure event bus to subscribe to our events
self.event_bus = event_bus or ScenarioEventBus()
self.event_bus.subscribe_to_events(self._events)
self.batch_run_id = get_batch_run_id()
self.scenario_set_id = set_id or "default"
@property
def events(self) -> Observable:
"""Expose event stream for subscribers like the event bus."""
return self._events
def _emit_event(self, event: ScenarioEvent) -> None:
"""
Emit a domain event to all subscribers.
This method publishes scenario events to the internal event stream,
which subscribers (like the event bus) can observe and react to.
The timestamp is automatically set to the current time.
Args:
event: The scenario event to emit
"""
event.timestamp = int(time.time() * 1000)
self._events.on_next(event)
def reset(self):
"""
Reset the scenario executor to initial state.
This method reinitializes all internal state for a fresh scenario run,
including conversation history, turn counters, and agent timing information.
Called automatically during initialization and can be used to rerun scenarios.
"""
self._state = ScenarioState(
description=self.description,
messages=[],
thread_id=str(PKSUID("thread")),
current_turn=0,
config=self.config,
_executor=self,
)
# Pydantic doesn't actually set the _executor field from the constructor, as it's private, so we need to do it manually
self._state._executor = self
self._pending_messages = {}
self._total_start_time = time.time()
self._agent_times = {}
self._new_turn()
self._state.current_turn = 0
context_scenario.set(self)
def add_message(
self, message: ChatCompletionMessageParam, from_agent_idx: Optional[int] = None
):
"""
Add a message to the conversation and broadcast to other agents.
This method adds a message to the conversation history and makes it available
to other agents in their next call. It's used internally by the executor
and can be called from script steps to inject custom messages.
Args:
message: OpenAI-compatible message to add to the conversation
from_agent_idx: Index of the agent that generated this message.
Used to avoid broadcasting the message back to its creator.
Example:
```
def inject_system_message(state: ScenarioState) -> None:
state.add_message({
"role": "system",
"content": "The user is now in a hurry"
})
# Use in script
result = await scenario.run(
name="system message test",
agents=[agent, user_sim, judge],
script=[
scenario.user("Hello"),
scenario.agent(),
inject_system_message,
scenario.user(), # Will see the system message
scenario.succeed()
]
)
```
"""
self._state.messages.append(message)
# Broadcast the message to other agents
for idx, _ in enumerate(self.agents):
if idx == from_agent_idx:
continue
if idx not in self._pending_messages:
self._pending_messages[idx] = []
self._pending_messages[idx].append(message)
def add_messages(
self,
messages: List[ChatCompletionMessageParam],
from_agent_idx: Optional[int] = None,
):
"""
Add multiple messages to the conversation.
Convenience method for adding multiple messages at once. Each message
is added individually using add_message().
Args:
messages: List of OpenAI-compatible messages to add
from_agent_idx: Index of the agent that generated these messages
Example:
```
# Agent returns multiple messages for a complex interaction
messages = [
{"role": "assistant", "content": "Let me search for that..."},
{"role": "assistant", "content": "Here's what I found: ..."}
]
executor.add_messages(messages, from_agent_idx=0)
```
"""
for message in messages:
self.add_message(message, from_agent_idx)
def _new_turn(self):
self._pending_agents_on_turn = set(self.agents)
self._pending_roles_on_turn = [
AgentRole.USER,
AgentRole.AGENT,
AgentRole.JUDGE,
]
self._state.current_turn += 1
async def step(self) -> Union[List[ChatCompletionMessageParam], ScenarioResult]:
"""
Execute a single step in the scenario.
A step consists of calling the next agent in the current turn's sequence
and processing their response. This method is used internally by the
scenario execution flow.
Returns:
Either a list of messages (if the scenario continues) or a
ScenarioResult (if the scenario should end)
Raises:
ValueError: If no result is returned from the internal step method
Note:
This is primarily an internal method. Most users should use the
high-level run() method or script DSL functions instead.
"""
result = await self._step()
if result is None:
raise ValueError("No result from step")
return result
async def _step(
self,
go_to_next_turn=True,
on_turn: Optional[
Union[
Callable[["ScenarioState"], None],
Callable[["ScenarioState"], Awaitable[None]],
]
] = None,
) -> Union[List[ChatCompletionMessageParam], ScenarioResult, None]:
if len(self._pending_roles_on_turn) == 0:
if not go_to_next_turn:
return None
self._new_turn()
if on_turn:
await await_if_awaitable(on_turn(self._state))
if self._state.current_turn >= (self.config.max_turns or 10):
return self._reached_max_turns()
current_role = self._pending_roles_on_turn[0]
idx, next_agent = self._next_agent_for_role(current_role)
if not next_agent:
self._pending_roles_on_turn.pop(0)
return await self._step(go_to_next_turn=go_to_next_turn, on_turn=on_turn)
self._pending_agents_on_turn.remove(next_agent)
return await self._call_agent(idx, role=current_role)
def _next_agent_for_role(
self, role: AgentRole
) -> Tuple[int, Optional[AgentAdapter]]:
for idx, agent in enumerate(self.agents):
if (
role == agent.role
and agent in self._pending_agents_on_turn
and agent.role in self._pending_roles_on_turn
):
return idx, agent
return -1, None
def _reached_max_turns(self, error_message: Optional[str] = None) -> ScenarioResult:
# If we reached max turns without conclusion, fail the test
agent_roles_agents_idx = [
idx
for idx, agent in enumerate(self.agents)
if agent.role == AgentRole.AGENT
]
agent_times = [
self._agent_times[idx]
for idx in agent_roles_agents_idx
if idx in self._agent_times
]
agent_time = sum(agent_times)
return ScenarioResult(
success=False,
messages=self._state.messages,
reasoning=error_message
or f"Reached maximum turns ({self.config.max_turns or 10}) without conclusion",
total_time=time.time() - self._total_start_time,
agent_time=agent_time,
)
async def run(self) -> ScenarioResult:
"""
Run a scenario against the agent under test.
Args:
context: Optional initial context for the agent
Returns:
ScenarioResult containing the test outcome
"""
scenario_run_id = generate_scenario_run_id()
try:
self._emit_run_started_event(scenario_run_id)
if self.config.verbose:
print("") # new line
self.reset()
for script_step in self.script:
callable = script_step(self._state)
if isinstance(callable, Awaitable):
result = await callable
else:
result = callable
self._emit_message_snapshot_event(scenario_run_id)
if isinstance(result, ScenarioResult):
status = (
ScenarioRunFinishedEventStatus.SUCCESS
if result.success
else ScenarioRunFinishedEventStatus.FAILED
)
self._emit_run_finished_event(scenario_run_id, result, status)
return result
result = self._reached_max_turns(
"""Reached end of script without conclusion, add one of the following to the end of the script:
- `scenario.proceed()` to let the simulation continue to play out
- `scenario.judge()` to force criteria judgement
- `scenario.succeed()` or `scenario.fail()` to end the test with an explicit result
"""
)
status = (
ScenarioRunFinishedEventStatus.SUCCESS
if result.success
else ScenarioRunFinishedEventStatus.FAILED
)
self._emit_run_finished_event(scenario_run_id, result, status)
return result
except Exception as e:
# Publish failure event before propagating the error
error_result = ScenarioResult(
success=False,
messages=self._state.messages,
reasoning=f"Scenario failed with error: {str(e)}",
total_time=time.time() - self._total_start_time,
agent_time=0,
)
self._emit_run_finished_event(
scenario_run_id, error_result, ScenarioRunFinishedEventStatus.ERROR
)
raise # Re-raise the exception after cleanup
async def _call_agent(
self, idx: int, role: AgentRole, request_judgment: bool = False
) -> Union[List[ChatCompletionMessageParam], ScenarioResult]:
agent = self.agents[idx]
if role == AgentRole.USER and self.config.debug:
print(
f"\n{self._scenario_name()}{termcolor.colored('[Debug Mode]', 'yellow')} Press enter to continue or type a message to send"
)
input_message = input(
self._scenario_name() + termcolor.colored("User: ", "green")
)
# Clear the input prompt lines completely
for _ in range(3):
sys.stdout.write("\033[F") # Move up to the input line
sys.stdout.write("\033[2K") # Clear the entire input line
sys.stdout.flush() # Make sure the clearing is visible
if input_message:
return [
ChatCompletionUserMessageParam(role="user", content=input_message)
]
with show_spinner(
text=(
"Judging..."
if role == AgentRole.JUDGE
else f"{role.value if isinstance(role, AgentRole) else role}:"
),
color=(
"blue"
if role == AgentRole.AGENT
else "green" if role == AgentRole.USER else "yellow"
),
enabled=self.config.verbose,
):
start_time = time.time()
# Prevent pydantic validation warnings which should already be disabled
with warnings.catch_warnings():
warnings.simplefilter("ignore")
agent_response = agent.call(
AgentInput(
# TODO: test thread_id
thread_id=self._state.thread_id,
messages=self._state.messages,
new_messages=self._pending_messages.get(idx, []),
judgment_request=request_judgment,
scenario_state=self._state,
)
)
if not isinstance(agent_response, Awaitable):
raise Exception(
agent_response_not_awaitable(agent.__class__.__name__),
)
agent_response = await agent_response
if idx not in self._agent_times:
self._agent_times[idx] = 0
self._agent_times[idx] += time.time() - start_time
self._pending_messages[idx] = []
check_valid_return_type(agent_response, agent.__class__.__name__)
messages = []
if isinstance(agent_response, ScenarioResult):
# TODO: should be an event
return agent_response
else:
messages = convert_agent_return_types_to_openai_messages(
agent_response,
role="user" if role == AgentRole.USER else "assistant",
)
self.add_messages(messages, from_agent_idx=idx)
if messages and self.config.verbose:
print_openai_messages(
self._scenario_name(),
[m for m in messages if m["role"] != "system"],
)
return messages
def _scenario_name(self):
if self.config.verbose == 2:
return termcolor.colored(f"[Scenario: {self.name}] ", "yellow")
else:
return ""
# Scripting utils
async def message(self, message: ChatCompletionMessageParam) -> None:
if message["role"] == "user":
await self._script_call_agent(AgentRole.USER, message)
elif message["role"] == "assistant":
await self._script_call_agent(AgentRole.AGENT, message)
else:
self.add_message(message)
async def user(
self, content: Optional[Union[str, ChatCompletionMessageParam]] = None
) -> None:
await self._script_call_agent(AgentRole.USER, content)
async def agent(
self, content: Optional[Union[str, ChatCompletionMessageParam]] = None
) -> None:
await self._script_call_agent(AgentRole.AGENT, content)
async def judge(
self, content: Optional[Union[str, ChatCompletionMessageParam]] = None
) -> Optional[ScenarioResult]:
return await self._script_call_agent(
AgentRole.JUDGE, content, request_judgment=True
)
async def proceed(
self,
turns: Optional[int] = None,
on_turn: Optional[
Union[
Callable[["ScenarioState"], None],
Callable[["ScenarioState"], Awaitable[None]],
]
] = None,
on_step: Optional[
Union[
Callable[["ScenarioState"], None],
Callable[["ScenarioState"], Awaitable[None]],
]
] = None,
) -> Optional[ScenarioResult]:
initial_turn: Optional[int] = None
while True:
next_message = await self._step(
on_turn=on_turn,
go_to_next_turn=(
turns is None
or initial_turn is None
or (self._state.current_turn + 1 < initial_turn + turns)
),
)
if initial_turn is None:
initial_turn = self._state.current_turn
if next_message is None:
break
if on_step:
await await_if_awaitable(on_step(self._state))
if isinstance(next_message, ScenarioResult):
return next_message
async def succeed(self, reasoning: Optional[str] = None) -> ScenarioResult:
return ScenarioResult(
success=True,
messages=self._state.messages,
reasoning=reasoning
or "Scenario marked as successful with scenario.succeed()",
)
async def fail(self, reasoning: Optional[str] = None) -> ScenarioResult:
return ScenarioResult(
success=False,
messages=self._state.messages,
reasoning=reasoning or "Scenario marked as failed with scenario.fail()",
)
def _consume_until_role(self, role: AgentRole) -> None:
while len(self._pending_roles_on_turn) > 0:
next_role = self._pending_roles_on_turn[0]
if next_role == role:
break
self._pending_roles_on_turn.pop(0)
async def _script_call_agent(
self,
role: AgentRole,
content: Optional[Union[str, ChatCompletionMessageParam]] = None,
request_judgment: bool = False,
) -> Optional[ScenarioResult]:
self._consume_until_role(role)
idx, next_agent = self._next_agent_for_role(role)
if not next_agent:
self._new_turn()
self._consume_until_role(role)
idx, next_agent = self._next_agent_for_role(role)
if not next_agent:
role_class = (
"a scenario.UserSimulatorAgent()"
if role == AgentRole.USER
else (
"a scenario.JudgeAgent()"
if role == AgentRole.JUDGE
else "your agent"
)
)
if content:
raise ValueError(
f"Cannot generate a message for role `{role.value}` with content `{content}` because no agent with this role was found, please add {role_class} to the scenario `agents` list"
)
raise ValueError(
f"Cannot generate a message for role `{role.value}` because no agent with this role was found, please add {role_class} to the scenario `agents` list"
)
self._pending_agents_on_turn.remove(next_agent)
if content:
if isinstance(content, str):
message = (
ChatCompletionUserMessageParam(role="user", content=content)
if role == AgentRole.USER
else ChatCompletionAssistantMessageParam(
role="assistant", content=content
)
)
else:
message = content
self.add_message(message)
if self.config.verbose:
print_openai_messages(self._scenario_name(), [message])
return
result = await self._call_agent(
idx, role=role, request_judgment=request_judgment
)
if isinstance(result, ScenarioResult):
return result
# Event handling methods
class _CommonEventFields(TypedDict):
"""
Common fields shared across all scenario events.
These fields provide consistent identification and timing information
for all events emitted during scenario execution.
Attributes:
batch_run_id: Unique identifier for the batch of scenario runs
scenario_run_id: Unique identifier for this specific scenario run
scenario_id: Human-readable name/identifier for the scenario
scenario_set_id: Set identifier for grouping related scenarios
timestamp: Unix timestamp in milliseconds when the event occurred
"""
batch_run_id: str
scenario_run_id: str
scenario_id: str
scenario_set_id: str
timestamp: int
def _create_common_event_fields(self, scenario_run_id: str) -> _CommonEventFields:
"""
Create common fields used across all scenario events.
This method generates the standard fields that every scenario event
must include for proper identification and timing.
Args:
scenario_run_id: Unique identifier for the current scenario run
Returns:
Dictionary containing common event fields with current timestamp
"""
return {
"batch_run_id": self.batch_run_id,
"scenario_run_id": scenario_run_id,
"scenario_id": self.name,
"scenario_set_id": self.scenario_set_id,
"timestamp": int(time.time() * 1000),
}
def _emit_run_started_event(self, scenario_run_id: str) -> None:
"""
Emit a scenario run started event.
This event is published when a scenario begins execution. It includes
metadata about the scenario such as name and description, and is used
to track the start of scenario runs in monitoring systems.
Args:
scenario_run_id: Unique identifier for the current scenario run
"""
common_fields = self._create_common_event_fields(scenario_run_id)
metadata = ScenarioRunStartedEventMetadata(
name=self.name,
description=self.description,
)
event = ScenarioRunStartedEvent(
**common_fields,
metadata=metadata,
)
self._emit_event(event)
def _emit_message_snapshot_event(self, scenario_run_id: str) -> None:
"""
Emit a message snapshot event.
This event captures the current state of the conversation during
scenario execution. It's published whenever messages are added to
the conversation, allowing real-time tracking of scenario progress.
"""
common_fields = self._create_common_event_fields(scenario_run_id)
event = ScenarioMessageSnapshotEvent(
**common_fields,
messages=convert_messages_to_api_client_messages(self._state.messages),
)
self._emit_event(event)
def _emit_run_finished_event(
self,
scenario_run_id: str,
result: ScenarioResult,
status: ScenarioRunFinishedEventStatus,
) -> None:
"""
Emit a scenario run finished event.
This event is published when a scenario completes execution, whether
successfully or with an error. It includes the final results, verdict,
and reasoning for the scenario outcome.
Args:
scenario_run_id: Unique identifier for the current scenario run
result: The final scenario result containing success/failure status
status: The execution status (SUCCESS, FAILED, or ERROR)
"""
common_fields = self._create_common_event_fields(scenario_run_id)
results = ScenarioRunFinishedEventResults(
verdict=(
ScenarioRunFinishedEventVerdict.SUCCESS
if result.success
else ScenarioRunFinishedEventVerdict.FAILURE
),
reasoning=result.reasoning or "",
met_criteria=result.passed_criteria,
unmet_criteria=result.failed_criteria,
)
event = ScenarioRunFinishedEvent(
**common_fields,
status=status,
results=results,
)
self._emit_event(event)
# Signal end of event stream
self._events.on_completed()
async def run(
name: str,
description: str,
agents: List[AgentAdapter] = [],
max_turns: Optional[int] = None,
verbose: Optional[Union[bool, int]] = None,
cache_key: Optional[str] = None,
debug: Optional[bool] = None,
script: Optional[List[ScriptStep]] = None,
set_id: Optional[str] = None,
) -> ScenarioResult:
"""
High-level interface for running a scenario test.
This is the main entry point for executing scenario tests. It creates a
ScenarioExecutor instance and runs it in an isolated thread pool to support
parallel execution and prevent blocking.
Args:
name: Human-readable name for the scenario
description: Detailed description of what the scenario tests
agents: List of agent adapters (agent under test, user simulator, judge)
max_turns: Maximum conversation turns before timeout (default: 10)
verbose: Show detailed output during execution
cache_key: Cache key for deterministic behavior
debug: Enable debug mode for step-by-step execution
script: Optional script steps to control scenario flow
set_id: Optional set identifier for grouping related scenarios
Returns:
ScenarioResult containing the test outcome, conversation history,
success/failure status, and detailed reasoning
Example:
```
import scenario
# Simple scenario with automatic flow
result = await scenario.run(
name="help request",
description="User asks for help with a technical problem",
agents=[
my_agent,
scenario.UserSimulatorAgent(),
scenario.JudgeAgent(criteria=["Agent provides helpful response"])
],
set_id="customer-support-tests"
)
# Scripted scenario with custom evaluations
result = await scenario.run(
name="custom interaction",
description="Test specific conversation flow",
agents=[
my_agent,
scenario.UserSimulatorAgent(),
scenario.JudgeAgent(criteria=["Agent provides helpful response"])
],
script=[
scenario.user("Hello"),
scenario.agent(),
custom_eval,
scenario.succeed()
],
set_id="integration-tests"
)
# Results analysis
print(f"Test {'PASSED' if result.success else 'FAILED'}")
print(f"Reasoning: {result.reasoning}")
print(f"Conversation had {len(result.messages)} messages")
```
"""
scenario = ScenarioExecutor(
name=name,
description=description,
agents=agents,
max_turns=max_turns,
verbose=verbose,
cache_key=cache_key,
debug=debug,
script=script,
set_id=set_id,
)
# We'll use a thread pool to run the execution logic, we
# require a separate thread because even though asyncio is
# being used throughout, any user code on the callback can
# be blocking, preventing them from running scenarios in parallel
with concurrent.futures.ThreadPoolExecutor() as executor:
def run_in_thread():
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
return loop.run_until_complete(scenario.run())
finally:
scenario.event_bus.drain()
loop.close()
# Run the function in the thread pool and await its result
# This converts the thread's execution into a Future that the current
# event loop can await without blocking
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(executor, run_in_thread)
return result
Functions
async def run(name: str, description: str, agents: List[AgentAdapter] = [], max_turns: int | None = None, verbose: bool | int | None = None, cache_key: str | None = None, debug: bool | None = None, script: List[Callable[[ForwardRef('ScenarioState')], None] | Callable[[ForwardRef('ScenarioState')], ScenarioResult | None] | Callable[[ForwardRef('ScenarioState')], Awaitable[None]] | Callable[[ForwardRef('ScenarioState')], Awaitable[ScenarioResult | None]]] | None = None, set_id: str | None = None) ‑> ScenarioResult
-
High-level interface for running a scenario test.
This is the main entry point for executing scenario tests. It creates a ScenarioExecutor instance and runs it in an isolated thread pool to support parallel execution and prevent blocking.
Args
name
- Human-readable name for the scenario
description
- Detailed description of what the scenario tests
agents
- List of agent adapters (agent under test, user simulator, judge)
max_turns
- Maximum conversation turns before timeout (default: 10)
verbose
- Show detailed output during execution
cache_key
- Cache key for deterministic behavior
debug
- Enable debug mode for step-by-step execution
script
- Optional script steps to control scenario flow
set_id
- Optional set identifier for grouping related scenarios
Returns
ScenarioResult containing the test outcome, conversation history, success/failure status, and detailed reasoning
Example
import scenario # Simple scenario with automatic flow result = await scenario.run( name="help request", description="User asks for help with a technical problem", agents=[ my_agent, scenario.UserSimulatorAgent(), scenario.JudgeAgent(criteria=["Agent provides helpful response"]) ], set_id="customer-support-tests" ) # Scripted scenario with custom evaluations result = await scenario.run( name="custom interaction", description="Test specific conversation flow", agents=[ my_agent, scenario.UserSimulatorAgent(), scenario.JudgeAgent(criteria=["Agent provides helpful response"]) ], script=[ scenario.user("Hello"), scenario.agent(), custom_eval, scenario.succeed() ], set_id="integration-tests" ) # Results analysis print(f"Test {'PASSED' if result.success else 'FAILED'}") print(f"Reasoning: {result.reasoning}") print(f"Conversation had {len(result.messages)} messages")
Expand source code
async def run( name: str, description: str, agents: List[AgentAdapter] = [], max_turns: Optional[int] = None, verbose: Optional[Union[bool, int]] = None, cache_key: Optional[str] = None, debug: Optional[bool] = None, script: Optional[List[ScriptStep]] = None, set_id: Optional[str] = None, ) -> ScenarioResult: """ High-level interface for running a scenario test. This is the main entry point for executing scenario tests. It creates a ScenarioExecutor instance and runs it in an isolated thread pool to support parallel execution and prevent blocking. Args: name: Human-readable name for the scenario description: Detailed description of what the scenario tests agents: List of agent adapters (agent under test, user simulator, judge) max_turns: Maximum conversation turns before timeout (default: 10) verbose: Show detailed output during execution cache_key: Cache key for deterministic behavior debug: Enable debug mode for step-by-step execution script: Optional script steps to control scenario flow set_id: Optional set identifier for grouping related scenarios Returns: ScenarioResult containing the test outcome, conversation history, success/failure status, and detailed reasoning Example: ``` import scenario # Simple scenario with automatic flow result = await scenario.run( name="help request", description="User asks for help with a technical problem", agents=[ my_agent, scenario.UserSimulatorAgent(), scenario.JudgeAgent(criteria=["Agent provides helpful response"]) ], set_id="customer-support-tests" ) # Scripted scenario with custom evaluations result = await scenario.run( name="custom interaction", description="Test specific conversation flow", agents=[ my_agent, scenario.UserSimulatorAgent(), scenario.JudgeAgent(criteria=["Agent provides helpful response"]) ], script=[ scenario.user("Hello"), scenario.agent(), custom_eval, scenario.succeed() ], set_id="integration-tests" ) # Results analysis print(f"Test {'PASSED' if result.success else 'FAILED'}") print(f"Reasoning: {result.reasoning}") print(f"Conversation had {len(result.messages)} messages") ``` """ scenario = ScenarioExecutor( name=name, description=description, agents=agents, max_turns=max_turns, verbose=verbose, cache_key=cache_key, debug=debug, script=script, set_id=set_id, ) # We'll use a thread pool to run the execution logic, we # require a separate thread because even though asyncio is # being used throughout, any user code on the callback can # be blocking, preventing them from running scenarios in parallel with concurrent.futures.ThreadPoolExecutor() as executor: def run_in_thread(): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) try: return loop.run_until_complete(scenario.run()) finally: scenario.event_bus.drain() loop.close() # Run the function in the thread pool and await its result # This converts the thread's execution into a Future that the current # event loop can await without blocking loop = asyncio.get_event_loop() result = await loop.run_in_executor(executor, run_in_thread) return result
Classes
class ScenarioExecutor (name: str, description: str, agents: List[AgentAdapter] = [], script: List[Callable[[ForwardRef('ScenarioState')], None] | Callable[[ForwardRef('ScenarioState')], ScenarioResult | None] | Callable[[ForwardRef('ScenarioState')], Awaitable[None]] | Callable[[ForwardRef('ScenarioState')], Awaitable[ScenarioResult | None]]] | None = None, max_turns: int | None = None, verbose: bool | int | None = None, cache_key: str | None = None, debug: bool | None = None, event_bus: scenario._events.event_bus.ScenarioEventBus | None = None, set_id: str | None = None)
-
Core orchestrator for scenario-based agent testing.
The ScenarioExecutor manages the complete lifecycle of a scenario test, including: - Orchestrating conversations between user simulators, agents, and judges - Managing turn-based execution flow - Handling script-based scenario control - Collecting and reporting test results - Supporting debug mode for interactive testing
This class serves as both a builder (for configuration) and an executor (for running tests). Most users will interact with it through the high-level
run()
function rather than instantiating it directly.Attributes
name
- Human-readable name for the scenario
description
- Detailed description of what the scenario tests
agents
- List of agent adapters participating in the scenario
script
- Optional list of script steps to control scenario flow
config
- Configuration settings for execution behavior
Initialize a scenario executor.
Args
name
- Human-readable name for the scenario (used in reports and logs)
description
- Detailed description of what the scenario tests. This guides the user simulator's behavior and provides context.
agents
- List of agent adapters participating in the scenario. Typically includes: agent under test, user simulator, and judge.
script
- Optional list of script steps to control scenario flow. If not provided, defaults to automatic proceeding.
max_turns
- Maximum number of conversation turns before timeout. Overrides global configuration for this scenario.
verbose
- Whether to show detailed output during execution. Can be True/False or integer level (2 for extra details).
cache_key
- Cache key for deterministic behavior across runs. Overrides global configuration for this scenario.
debug
- Whether to enable debug mode with step-by-step execution. Overrides global configuration for this scenario.
event_bus
- Optional event bus that will subscribe to this executor's events
set_id
- Optional set identifier for grouping related scenarios
Expand source code
class ScenarioExecutor: """ Core orchestrator for scenario-based agent testing. The ScenarioExecutor manages the complete lifecycle of a scenario test, including: - Orchestrating conversations between user simulators, agents, and judges - Managing turn-based execution flow - Handling script-based scenario control - Collecting and reporting test results - Supporting debug mode for interactive testing This class serves as both a builder (for configuration) and an executor (for running tests). Most users will interact with it through the high-level `scenario.run()` function rather than instantiating it directly. Attributes: name: Human-readable name for the scenario description: Detailed description of what the scenario tests agents: List of agent adapters participating in the scenario script: Optional list of script steps to control scenario flow config: Configuration settings for execution behavior """ name: str description: str agents: List[AgentAdapter] script: List[ScriptStep] config: ScenarioConfig _state: ScenarioState _total_start_time: float _pending_messages: Dict[int, List[ChatCompletionMessageParam]] _pending_roles_on_turn: List[AgentRole] = [] _pending_agents_on_turn: Set[AgentAdapter] = set() _agent_times: Dict[int, float] = {} _events: Subject event_bus: ScenarioEventBus batch_run_id: str scenario_set_id: str def __init__( self, name: str, description: str, agents: List[AgentAdapter] = [], script: Optional[List[ScriptStep]] = None, # Config max_turns: Optional[int] = None, verbose: Optional[Union[bool, int]] = None, cache_key: Optional[str] = None, debug: Optional[bool] = None, event_bus: Optional[ScenarioEventBus] = None, set_id: Optional[str] = None, ): """ Initialize a scenario executor. Args: name: Human-readable name for the scenario (used in reports and logs) description: Detailed description of what the scenario tests. This guides the user simulator's behavior and provides context. agents: List of agent adapters participating in the scenario. Typically includes: agent under test, user simulator, and judge. script: Optional list of script steps to control scenario flow. If not provided, defaults to automatic proceeding. max_turns: Maximum number of conversation turns before timeout. Overrides global configuration for this scenario. verbose: Whether to show detailed output during execution. Can be True/False or integer level (2 for extra details). cache_key: Cache key for deterministic behavior across runs. Overrides global configuration for this scenario. debug: Whether to enable debug mode with step-by-step execution. Overrides global configuration for this scenario. event_bus: Optional event bus that will subscribe to this executor's events set_id: Optional set identifier for grouping related scenarios """ self.name = name self.description = description self.agents = agents self.script = script or [proceed()] config = ScenarioConfig( max_turns=max_turns, verbose=verbose, cache_key=cache_key, debug=debug, ) self.config = (ScenarioConfig.default_config or ScenarioConfig()).merge(config) self.reset() # Create executor's own event stream self._events = Subject() # Create and configure event bus to subscribe to our events self.event_bus = event_bus or ScenarioEventBus() self.event_bus.subscribe_to_events(self._events) self.batch_run_id = get_batch_run_id() self.scenario_set_id = set_id or "default" @property def events(self) -> Observable: """Expose event stream for subscribers like the event bus.""" return self._events def _emit_event(self, event: ScenarioEvent) -> None: """ Emit a domain event to all subscribers. This method publishes scenario events to the internal event stream, which subscribers (like the event bus) can observe and react to. The timestamp is automatically set to the current time. Args: event: The scenario event to emit """ event.timestamp = int(time.time() * 1000) self._events.on_next(event) def reset(self): """ Reset the scenario executor to initial state. This method reinitializes all internal state for a fresh scenario run, including conversation history, turn counters, and agent timing information. Called automatically during initialization and can be used to rerun scenarios. """ self._state = ScenarioState( description=self.description, messages=[], thread_id=str(PKSUID("thread")), current_turn=0, config=self.config, _executor=self, ) # Pydantic doesn't actually set the _executor field from the constructor, as it's private, so we need to do it manually self._state._executor = self self._pending_messages = {} self._total_start_time = time.time() self._agent_times = {} self._new_turn() self._state.current_turn = 0 context_scenario.set(self) def add_message( self, message: ChatCompletionMessageParam, from_agent_idx: Optional[int] = None ): """ Add a message to the conversation and broadcast to other agents. This method adds a message to the conversation history and makes it available to other agents in their next call. It's used internally by the executor and can be called from script steps to inject custom messages. Args: message: OpenAI-compatible message to add to the conversation from_agent_idx: Index of the agent that generated this message. Used to avoid broadcasting the message back to its creator. Example: ``` def inject_system_message(state: ScenarioState) -> None: state.add_message({ "role": "system", "content": "The user is now in a hurry" }) # Use in script result = await scenario.run( name="system message test", agents=[agent, user_sim, judge], script=[ scenario.user("Hello"), scenario.agent(), inject_system_message, scenario.user(), # Will see the system message scenario.succeed() ] ) ``` """ self._state.messages.append(message) # Broadcast the message to other agents for idx, _ in enumerate(self.agents): if idx == from_agent_idx: continue if idx not in self._pending_messages: self._pending_messages[idx] = [] self._pending_messages[idx].append(message) def add_messages( self, messages: List[ChatCompletionMessageParam], from_agent_idx: Optional[int] = None, ): """ Add multiple messages to the conversation. Convenience method for adding multiple messages at once. Each message is added individually using add_message(). Args: messages: List of OpenAI-compatible messages to add from_agent_idx: Index of the agent that generated these messages Example: ``` # Agent returns multiple messages for a complex interaction messages = [ {"role": "assistant", "content": "Let me search for that..."}, {"role": "assistant", "content": "Here's what I found: ..."} ] executor.add_messages(messages, from_agent_idx=0) ``` """ for message in messages: self.add_message(message, from_agent_idx) def _new_turn(self): self._pending_agents_on_turn = set(self.agents) self._pending_roles_on_turn = [ AgentRole.USER, AgentRole.AGENT, AgentRole.JUDGE, ] self._state.current_turn += 1 async def step(self) -> Union[List[ChatCompletionMessageParam], ScenarioResult]: """ Execute a single step in the scenario. A step consists of calling the next agent in the current turn's sequence and processing their response. This method is used internally by the scenario execution flow. Returns: Either a list of messages (if the scenario continues) or a ScenarioResult (if the scenario should end) Raises: ValueError: If no result is returned from the internal step method Note: This is primarily an internal method. Most users should use the high-level run() method or script DSL functions instead. """ result = await self._step() if result is None: raise ValueError("No result from step") return result async def _step( self, go_to_next_turn=True, on_turn: Optional[ Union[ Callable[["ScenarioState"], None], Callable[["ScenarioState"], Awaitable[None]], ] ] = None, ) -> Union[List[ChatCompletionMessageParam], ScenarioResult, None]: if len(self._pending_roles_on_turn) == 0: if not go_to_next_turn: return None self._new_turn() if on_turn: await await_if_awaitable(on_turn(self._state)) if self._state.current_turn >= (self.config.max_turns or 10): return self._reached_max_turns() current_role = self._pending_roles_on_turn[0] idx, next_agent = self._next_agent_for_role(current_role) if not next_agent: self._pending_roles_on_turn.pop(0) return await self._step(go_to_next_turn=go_to_next_turn, on_turn=on_turn) self._pending_agents_on_turn.remove(next_agent) return await self._call_agent(idx, role=current_role) def _next_agent_for_role( self, role: AgentRole ) -> Tuple[int, Optional[AgentAdapter]]: for idx, agent in enumerate(self.agents): if ( role == agent.role and agent in self._pending_agents_on_turn and agent.role in self._pending_roles_on_turn ): return idx, agent return -1, None def _reached_max_turns(self, error_message: Optional[str] = None) -> ScenarioResult: # If we reached max turns without conclusion, fail the test agent_roles_agents_idx = [ idx for idx, agent in enumerate(self.agents) if agent.role == AgentRole.AGENT ] agent_times = [ self._agent_times[idx] for idx in agent_roles_agents_idx if idx in self._agent_times ] agent_time = sum(agent_times) return ScenarioResult( success=False, messages=self._state.messages, reasoning=error_message or f"Reached maximum turns ({self.config.max_turns or 10}) without conclusion", total_time=time.time() - self._total_start_time, agent_time=agent_time, ) async def run(self) -> ScenarioResult: """ Run a scenario against the agent under test. Args: context: Optional initial context for the agent Returns: ScenarioResult containing the test outcome """ scenario_run_id = generate_scenario_run_id() try: self._emit_run_started_event(scenario_run_id) if self.config.verbose: print("") # new line self.reset() for script_step in self.script: callable = script_step(self._state) if isinstance(callable, Awaitable): result = await callable else: result = callable self._emit_message_snapshot_event(scenario_run_id) if isinstance(result, ScenarioResult): status = ( ScenarioRunFinishedEventStatus.SUCCESS if result.success else ScenarioRunFinishedEventStatus.FAILED ) self._emit_run_finished_event(scenario_run_id, result, status) return result result = self._reached_max_turns( """Reached end of script without conclusion, add one of the following to the end of the script: - `scenario.proceed()` to let the simulation continue to play out - `scenario.judge()` to force criteria judgement - `scenario.succeed()` or `scenario.fail()` to end the test with an explicit result """ ) status = ( ScenarioRunFinishedEventStatus.SUCCESS if result.success else ScenarioRunFinishedEventStatus.FAILED ) self._emit_run_finished_event(scenario_run_id, result, status) return result except Exception as e: # Publish failure event before propagating the error error_result = ScenarioResult( success=False, messages=self._state.messages, reasoning=f"Scenario failed with error: {str(e)}", total_time=time.time() - self._total_start_time, agent_time=0, ) self._emit_run_finished_event( scenario_run_id, error_result, ScenarioRunFinishedEventStatus.ERROR ) raise # Re-raise the exception after cleanup async def _call_agent( self, idx: int, role: AgentRole, request_judgment: bool = False ) -> Union[List[ChatCompletionMessageParam], ScenarioResult]: agent = self.agents[idx] if role == AgentRole.USER and self.config.debug: print( f"\n{self._scenario_name()}{termcolor.colored('[Debug Mode]', 'yellow')} Press enter to continue or type a message to send" ) input_message = input( self._scenario_name() + termcolor.colored("User: ", "green") ) # Clear the input prompt lines completely for _ in range(3): sys.stdout.write("\033[F") # Move up to the input line sys.stdout.write("\033[2K") # Clear the entire input line sys.stdout.flush() # Make sure the clearing is visible if input_message: return [ ChatCompletionUserMessageParam(role="user", content=input_message) ] with show_spinner( text=( "Judging..." if role == AgentRole.JUDGE else f"{role.value if isinstance(role, AgentRole) else role}:" ), color=( "blue" if role == AgentRole.AGENT else "green" if role == AgentRole.USER else "yellow" ), enabled=self.config.verbose, ): start_time = time.time() # Prevent pydantic validation warnings which should already be disabled with warnings.catch_warnings(): warnings.simplefilter("ignore") agent_response = agent.call( AgentInput( # TODO: test thread_id thread_id=self._state.thread_id, messages=self._state.messages, new_messages=self._pending_messages.get(idx, []), judgment_request=request_judgment, scenario_state=self._state, ) ) if not isinstance(agent_response, Awaitable): raise Exception( agent_response_not_awaitable(agent.__class__.__name__), ) agent_response = await agent_response if idx not in self._agent_times: self._agent_times[idx] = 0 self._agent_times[idx] += time.time() - start_time self._pending_messages[idx] = [] check_valid_return_type(agent_response, agent.__class__.__name__) messages = [] if isinstance(agent_response, ScenarioResult): # TODO: should be an event return agent_response else: messages = convert_agent_return_types_to_openai_messages( agent_response, role="user" if role == AgentRole.USER else "assistant", ) self.add_messages(messages, from_agent_idx=idx) if messages and self.config.verbose: print_openai_messages( self._scenario_name(), [m for m in messages if m["role"] != "system"], ) return messages def _scenario_name(self): if self.config.verbose == 2: return termcolor.colored(f"[Scenario: {self.name}] ", "yellow") else: return "" # Scripting utils async def message(self, message: ChatCompletionMessageParam) -> None: if message["role"] == "user": await self._script_call_agent(AgentRole.USER, message) elif message["role"] == "assistant": await self._script_call_agent(AgentRole.AGENT, message) else: self.add_message(message) async def user( self, content: Optional[Union[str, ChatCompletionMessageParam]] = None ) -> None: await self._script_call_agent(AgentRole.USER, content) async def agent( self, content: Optional[Union[str, ChatCompletionMessageParam]] = None ) -> None: await self._script_call_agent(AgentRole.AGENT, content) async def judge( self, content: Optional[Union[str, ChatCompletionMessageParam]] = None ) -> Optional[ScenarioResult]: return await self._script_call_agent( AgentRole.JUDGE, content, request_judgment=True ) async def proceed( self, turns: Optional[int] = None, on_turn: Optional[ Union[ Callable[["ScenarioState"], None], Callable[["ScenarioState"], Awaitable[None]], ] ] = None, on_step: Optional[ Union[ Callable[["ScenarioState"], None], Callable[["ScenarioState"], Awaitable[None]], ] ] = None, ) -> Optional[ScenarioResult]: initial_turn: Optional[int] = None while True: next_message = await self._step( on_turn=on_turn, go_to_next_turn=( turns is None or initial_turn is None or (self._state.current_turn + 1 < initial_turn + turns) ), ) if initial_turn is None: initial_turn = self._state.current_turn if next_message is None: break if on_step: await await_if_awaitable(on_step(self._state)) if isinstance(next_message, ScenarioResult): return next_message async def succeed(self, reasoning: Optional[str] = None) -> ScenarioResult: return ScenarioResult( success=True, messages=self._state.messages, reasoning=reasoning or "Scenario marked as successful with scenario.succeed()", ) async def fail(self, reasoning: Optional[str] = None) -> ScenarioResult: return ScenarioResult( success=False, messages=self._state.messages, reasoning=reasoning or "Scenario marked as failed with scenario.fail()", ) def _consume_until_role(self, role: AgentRole) -> None: while len(self._pending_roles_on_turn) > 0: next_role = self._pending_roles_on_turn[0] if next_role == role: break self._pending_roles_on_turn.pop(0) async def _script_call_agent( self, role: AgentRole, content: Optional[Union[str, ChatCompletionMessageParam]] = None, request_judgment: bool = False, ) -> Optional[ScenarioResult]: self._consume_until_role(role) idx, next_agent = self._next_agent_for_role(role) if not next_agent: self._new_turn() self._consume_until_role(role) idx, next_agent = self._next_agent_for_role(role) if not next_agent: role_class = ( "a scenario.UserSimulatorAgent()" if role == AgentRole.USER else ( "a scenario.JudgeAgent()" if role == AgentRole.JUDGE else "your agent" ) ) if content: raise ValueError( f"Cannot generate a message for role `{role.value}` with content `{content}` because no agent with this role was found, please add {role_class} to the scenario `agents` list" ) raise ValueError( f"Cannot generate a message for role `{role.value}` because no agent with this role was found, please add {role_class} to the scenario `agents` list" ) self._pending_agents_on_turn.remove(next_agent) if content: if isinstance(content, str): message = ( ChatCompletionUserMessageParam(role="user", content=content) if role == AgentRole.USER else ChatCompletionAssistantMessageParam( role="assistant", content=content ) ) else: message = content self.add_message(message) if self.config.verbose: print_openai_messages(self._scenario_name(), [message]) return result = await self._call_agent( idx, role=role, request_judgment=request_judgment ) if isinstance(result, ScenarioResult): return result # Event handling methods class _CommonEventFields(TypedDict): """ Common fields shared across all scenario events. These fields provide consistent identification and timing information for all events emitted during scenario execution. Attributes: batch_run_id: Unique identifier for the batch of scenario runs scenario_run_id: Unique identifier for this specific scenario run scenario_id: Human-readable name/identifier for the scenario scenario_set_id: Set identifier for grouping related scenarios timestamp: Unix timestamp in milliseconds when the event occurred """ batch_run_id: str scenario_run_id: str scenario_id: str scenario_set_id: str timestamp: int def _create_common_event_fields(self, scenario_run_id: str) -> _CommonEventFields: """ Create common fields used across all scenario events. This method generates the standard fields that every scenario event must include for proper identification and timing. Args: scenario_run_id: Unique identifier for the current scenario run Returns: Dictionary containing common event fields with current timestamp """ return { "batch_run_id": self.batch_run_id, "scenario_run_id": scenario_run_id, "scenario_id": self.name, "scenario_set_id": self.scenario_set_id, "timestamp": int(time.time() * 1000), } def _emit_run_started_event(self, scenario_run_id: str) -> None: """ Emit a scenario run started event. This event is published when a scenario begins execution. It includes metadata about the scenario such as name and description, and is used to track the start of scenario runs in monitoring systems. Args: scenario_run_id: Unique identifier for the current scenario run """ common_fields = self._create_common_event_fields(scenario_run_id) metadata = ScenarioRunStartedEventMetadata( name=self.name, description=self.description, ) event = ScenarioRunStartedEvent( **common_fields, metadata=metadata, ) self._emit_event(event) def _emit_message_snapshot_event(self, scenario_run_id: str) -> None: """ Emit a message snapshot event. This event captures the current state of the conversation during scenario execution. It's published whenever messages are added to the conversation, allowing real-time tracking of scenario progress. """ common_fields = self._create_common_event_fields(scenario_run_id) event = ScenarioMessageSnapshotEvent( **common_fields, messages=convert_messages_to_api_client_messages(self._state.messages), ) self._emit_event(event) def _emit_run_finished_event( self, scenario_run_id: str, result: ScenarioResult, status: ScenarioRunFinishedEventStatus, ) -> None: """ Emit a scenario run finished event. This event is published when a scenario completes execution, whether successfully or with an error. It includes the final results, verdict, and reasoning for the scenario outcome. Args: scenario_run_id: Unique identifier for the current scenario run result: The final scenario result containing success/failure status status: The execution status (SUCCESS, FAILED, or ERROR) """ common_fields = self._create_common_event_fields(scenario_run_id) results = ScenarioRunFinishedEventResults( verdict=( ScenarioRunFinishedEventVerdict.SUCCESS if result.success else ScenarioRunFinishedEventVerdict.FAILURE ), reasoning=result.reasoning or "", met_criteria=result.passed_criteria, unmet_criteria=result.failed_criteria, ) event = ScenarioRunFinishedEvent( **common_fields, status=status, results=results, ) self._emit_event(event) # Signal end of event stream self._events.on_completed()
Class variables
var agents : List[AgentAdapter]
-
The type of the None singleton.
var batch_run_id : str
-
The type of the None singleton.
var config : ScenarioConfig
-
The type of the None singleton.
var description : str
-
The type of the None singleton.
var event_bus : scenario._events.event_bus.ScenarioEventBus
-
The type of the None singleton.
var name : str
-
The type of the None singleton.
var scenario_set_id : str
-
The type of the None singleton.
var script : List[Callable[[ScenarioState], None] | Callable[[ScenarioState], ScenarioResult | None] | Callable[[ScenarioState], Awaitable[None]] | Callable[[ScenarioState], Awaitable[ScenarioResult | None]]]
-
The type of the None singleton.
Instance variables
var events : rx.core.observable.observable.Observable
-
Expose event stream for subscribers like the event bus.
Expand source code
@property def events(self) -> Observable: """Expose event stream for subscribers like the event bus.""" return self._events
Methods
def add_message(self, message: openai.types.chat.chat_completion_developer_message_param.ChatCompletionDeveloperMessageParam | openai.types.chat.chat_completion_system_message_param.ChatCompletionSystemMessageParam | openai.types.chat.chat_completion_user_message_param.ChatCompletionUserMessageParam | openai.types.chat.chat_completion_assistant_message_param.ChatCompletionAssistantMessageParam | openai.types.chat.chat_completion_tool_message_param.ChatCompletionToolMessageParam | openai.types.chat.chat_completion_function_message_param.ChatCompletionFunctionMessageParam, from_agent_idx: int | None = None)
-
Add a message to the conversation and broadcast to other agents.
This method adds a message to the conversation history and makes it available to other agents in their next call. It's used internally by the executor and can be called from script steps to inject custom messages.
Args
message
- OpenAI-compatible message to add to the conversation
from_agent_idx
- Index of the agent that generated this message. Used to avoid broadcasting the message back to its creator.
Example
def inject_system_message(state: ScenarioState) -> None: state.add_message({ "role": "system", "content": "The user is now in a hurry" }) # Use in script result = await scenario.run( name="system message test", agents=[agent, user_sim, judge], script=[ scenario.user("Hello"), scenario.agent(), inject_system_message, scenario.user(), # Will see the system message scenario.succeed() ] )
Expand source code
def add_message( self, message: ChatCompletionMessageParam, from_agent_idx: Optional[int] = None ): """ Add a message to the conversation and broadcast to other agents. This method adds a message to the conversation history and makes it available to other agents in their next call. It's used internally by the executor and can be called from script steps to inject custom messages. Args: message: OpenAI-compatible message to add to the conversation from_agent_idx: Index of the agent that generated this message. Used to avoid broadcasting the message back to its creator. Example: ``` def inject_system_message(state: ScenarioState) -> None: state.add_message({ "role": "system", "content": "The user is now in a hurry" }) # Use in script result = await scenario.run( name="system message test", agents=[agent, user_sim, judge], script=[ scenario.user("Hello"), scenario.agent(), inject_system_message, scenario.user(), # Will see the system message scenario.succeed() ] ) ``` """ self._state.messages.append(message) # Broadcast the message to other agents for idx, _ in enumerate(self.agents): if idx == from_agent_idx: continue if idx not in self._pending_messages: self._pending_messages[idx] = [] self._pending_messages[idx].append(message)
def add_messages(self, messages: List[openai.types.chat.chat_completion_developer_message_param.ChatCompletionDeveloperMessageParam | openai.types.chat.chat_completion_system_message_param.ChatCompletionSystemMessageParam | openai.types.chat.chat_completion_user_message_param.ChatCompletionUserMessageParam | openai.types.chat.chat_completion_assistant_message_param.ChatCompletionAssistantMessageParam | openai.types.chat.chat_completion_tool_message_param.ChatCompletionToolMessageParam | openai.types.chat.chat_completion_function_message_param.ChatCompletionFunctionMessageParam], from_agent_idx: int | None = None)
-
Add multiple messages to the conversation.
Convenience method for adding multiple messages at once. Each message is added individually using add_message().
Args
messages
- List of OpenAI-compatible messages to add
from_agent_idx
- Index of the agent that generated these messages
Example
# Agent returns multiple messages for a complex interaction messages = [ {"role": "assistant", "content": "Let me search for that..."}, {"role": "assistant", "content": "Here's what I found: ..."} ] executor.add_messages(messages, from_agent_idx=0)
Expand source code
def add_messages( self, messages: List[ChatCompletionMessageParam], from_agent_idx: Optional[int] = None, ): """ Add multiple messages to the conversation. Convenience method for adding multiple messages at once. Each message is added individually using add_message(). Args: messages: List of OpenAI-compatible messages to add from_agent_idx: Index of the agent that generated these messages Example: ``` # Agent returns multiple messages for a complex interaction messages = [ {"role": "assistant", "content": "Let me search for that..."}, {"role": "assistant", "content": "Here's what I found: ..."} ] executor.add_messages(messages, from_agent_idx=0) ``` """ for message in messages: self.add_message(message, from_agent_idx)
async def agent(self, content: str | openai.types.chat.chat_completion_developer_message_param.ChatCompletionDeveloperMessageParam | openai.types.chat.chat_completion_system_message_param.ChatCompletionSystemMessageParam | openai.types.chat.chat_completion_user_message_param.ChatCompletionUserMessageParam | openai.types.chat.chat_completion_assistant_message_param.ChatCompletionAssistantMessageParam | openai.types.chat.chat_completion_tool_message_param.ChatCompletionToolMessageParam | openai.types.chat.chat_completion_function_message_param.ChatCompletionFunctionMessageParam | None = None) ‑> None
-
Expand source code
async def agent( self, content: Optional[Union[str, ChatCompletionMessageParam]] = None ) -> None: await self._script_call_agent(AgentRole.AGENT, content)
async def fail(self, reasoning: str | None = None) ‑> ScenarioResult
-
Expand source code
async def fail(self, reasoning: Optional[str] = None) -> ScenarioResult: return ScenarioResult( success=False, messages=self._state.messages, reasoning=reasoning or "Scenario marked as failed with scenario.fail()", )
async def judge(self, content: str | openai.types.chat.chat_completion_developer_message_param.ChatCompletionDeveloperMessageParam | openai.types.chat.chat_completion_system_message_param.ChatCompletionSystemMessageParam | openai.types.chat.chat_completion_user_message_param.ChatCompletionUserMessageParam | openai.types.chat.chat_completion_assistant_message_param.ChatCompletionAssistantMessageParam | openai.types.chat.chat_completion_tool_message_param.ChatCompletionToolMessageParam | openai.types.chat.chat_completion_function_message_param.ChatCompletionFunctionMessageParam | None = None) ‑> ScenarioResult | None
-
Expand source code
async def judge( self, content: Optional[Union[str, ChatCompletionMessageParam]] = None ) -> Optional[ScenarioResult]: return await self._script_call_agent( AgentRole.JUDGE, content, request_judgment=True )
async def message(self, message: openai.types.chat.chat_completion_developer_message_param.ChatCompletionDeveloperMessageParam | openai.types.chat.chat_completion_system_message_param.ChatCompletionSystemMessageParam | openai.types.chat.chat_completion_user_message_param.ChatCompletionUserMessageParam | openai.types.chat.chat_completion_assistant_message_param.ChatCompletionAssistantMessageParam | openai.types.chat.chat_completion_tool_message_param.ChatCompletionToolMessageParam | openai.types.chat.chat_completion_function_message_param.ChatCompletionFunctionMessageParam) ‑> None
-
Expand source code
async def message(self, message: ChatCompletionMessageParam) -> None: if message["role"] == "user": await self._script_call_agent(AgentRole.USER, message) elif message["role"] == "assistant": await self._script_call_agent(AgentRole.AGENT, message) else: self.add_message(message)
async def proceed(self, turns: int | None = None, on_turn: Callable[[ForwardRef('ScenarioState')], None] | Callable[[ForwardRef('ScenarioState')], Awaitable[None]] | None = None, on_step: Callable[[ForwardRef('ScenarioState')], None] | Callable[[ForwardRef('ScenarioState')], Awaitable[None]] | None = None) ‑> ScenarioResult | None
-
Expand source code
async def proceed( self, turns: Optional[int] = None, on_turn: Optional[ Union[ Callable[["ScenarioState"], None], Callable[["ScenarioState"], Awaitable[None]], ] ] = None, on_step: Optional[ Union[ Callable[["ScenarioState"], None], Callable[["ScenarioState"], Awaitable[None]], ] ] = None, ) -> Optional[ScenarioResult]: initial_turn: Optional[int] = None while True: next_message = await self._step( on_turn=on_turn, go_to_next_turn=( turns is None or initial_turn is None or (self._state.current_turn + 1 < initial_turn + turns) ), ) if initial_turn is None: initial_turn = self._state.current_turn if next_message is None: break if on_step: await await_if_awaitable(on_step(self._state)) if isinstance(next_message, ScenarioResult): return next_message
def reset(self)
-
Reset the scenario executor to initial state.
This method reinitializes all internal state for a fresh scenario run, including conversation history, turn counters, and agent timing information. Called automatically during initialization and can be used to rerun scenarios.
Expand source code
def reset(self): """ Reset the scenario executor to initial state. This method reinitializes all internal state for a fresh scenario run, including conversation history, turn counters, and agent timing information. Called automatically during initialization and can be used to rerun scenarios. """ self._state = ScenarioState( description=self.description, messages=[], thread_id=str(PKSUID("thread")), current_turn=0, config=self.config, _executor=self, ) # Pydantic doesn't actually set the _executor field from the constructor, as it's private, so we need to do it manually self._state._executor = self self._pending_messages = {} self._total_start_time = time.time() self._agent_times = {} self._new_turn() self._state.current_turn = 0 context_scenario.set(self)
async def run(self) ‑> ScenarioResult
-
Run a scenario against the agent under test.
Args
context
- Optional initial context for the agent
Returns
ScenarioResult containing the test outcome
Expand source code
async def run(self) -> ScenarioResult: """ Run a scenario against the agent under test. Args: context: Optional initial context for the agent Returns: ScenarioResult containing the test outcome """ scenario_run_id = generate_scenario_run_id() try: self._emit_run_started_event(scenario_run_id) if self.config.verbose: print("") # new line self.reset() for script_step in self.script: callable = script_step(self._state) if isinstance(callable, Awaitable): result = await callable else: result = callable self._emit_message_snapshot_event(scenario_run_id) if isinstance(result, ScenarioResult): status = ( ScenarioRunFinishedEventStatus.SUCCESS if result.success else ScenarioRunFinishedEventStatus.FAILED ) self._emit_run_finished_event(scenario_run_id, result, status) return result result = self._reached_max_turns( """Reached end of script without conclusion, add one of the following to the end of the script: - `scenario.proceed()` to let the simulation continue to play out - `scenario.judge()` to force criteria judgement - `scenario.succeed()` or `scenario.fail()` to end the test with an explicit result """ ) status = ( ScenarioRunFinishedEventStatus.SUCCESS if result.success else ScenarioRunFinishedEventStatus.FAILED ) self._emit_run_finished_event(scenario_run_id, result, status) return result except Exception as e: # Publish failure event before propagating the error error_result = ScenarioResult( success=False, messages=self._state.messages, reasoning=f"Scenario failed with error: {str(e)}", total_time=time.time() - self._total_start_time, agent_time=0, ) self._emit_run_finished_event( scenario_run_id, error_result, ScenarioRunFinishedEventStatus.ERROR ) raise # Re-raise the exception after cleanup
async def step(self) ‑> List[openai.types.chat.chat_completion_developer_message_param.ChatCompletionDeveloperMessageParam | openai.types.chat.chat_completion_system_message_param.ChatCompletionSystemMessageParam | openai.types.chat.chat_completion_user_message_param.ChatCompletionUserMessageParam | openai.types.chat.chat_completion_assistant_message_param.ChatCompletionAssistantMessageParam | openai.types.chat.chat_completion_tool_message_param.ChatCompletionToolMessageParam | openai.types.chat.chat_completion_function_message_param.ChatCompletionFunctionMessageParam] | ScenarioResult
-
Execute a single step in the scenario.
A step consists of calling the next agent in the current turn's sequence and processing their response. This method is used internally by the scenario execution flow.
Returns
Either a list of messages (if the scenario continues) or a ScenarioResult (if the scenario should end)
Raises
ValueError
- If no result is returned from the internal step method
Note
This is primarily an internal method. Most users should use the high-level run() method or script DSL functions instead.
Expand source code
async def step(self) -> Union[List[ChatCompletionMessageParam], ScenarioResult]: """ Execute a single step in the scenario. A step consists of calling the next agent in the current turn's sequence and processing their response. This method is used internally by the scenario execution flow. Returns: Either a list of messages (if the scenario continues) or a ScenarioResult (if the scenario should end) Raises: ValueError: If no result is returned from the internal step method Note: This is primarily an internal method. Most users should use the high-level run() method or script DSL functions instead. """ result = await self._step() if result is None: raise ValueError("No result from step") return result
async def succeed(self, reasoning: str | None = None) ‑> ScenarioResult
-
Expand source code
async def succeed(self, reasoning: Optional[str] = None) -> ScenarioResult: return ScenarioResult( success=True, messages=self._state.messages, reasoning=reasoning or "Scenario marked as successful with scenario.succeed()", )
async def user(self, content: str | openai.types.chat.chat_completion_developer_message_param.ChatCompletionDeveloperMessageParam | openai.types.chat.chat_completion_system_message_param.ChatCompletionSystemMessageParam | openai.types.chat.chat_completion_user_message_param.ChatCompletionUserMessageParam | openai.types.chat.chat_completion_assistant_message_param.ChatCompletionAssistantMessageParam | openai.types.chat.chat_completion_tool_message_param.ChatCompletionToolMessageParam | openai.types.chat.chat_completion_function_message_param.ChatCompletionFunctionMessageParam | None = None) ‑> None
-
Expand source code
async def user( self, content: Optional[Union[str, ChatCompletionMessageParam]] = None ) -> None: await self._script_call_agent(AgentRole.USER, content)